关于举办“利用异步更新的动态伊辛模型重建网络结构”学术报告的通知
发布时间: 2014-12-22 浏览次数: 1037 文章来源: 电子科学与工程学院、科技处

  报告题目:Connectivity inference by asynchronously updated kinetic Ising model (利用异步更新的动态伊辛模型重建网络结构)

  报告人:曾红丽

  时间:2014年12月24日14:30

  地点:三牌楼校区科研楼712

  主办单位:电子科学与工程学院、科技处


  报告人简介

  曾红丽,于芬兰阿尔托大学(Aalto University)获物理学博士学位,现为瑞典乌普萨拉大学埃格斯特朗实验室(Angstrom Laboratory, Uppsala University)博士后研究员。曾入选芬兰计算科学博士培养计划FICS成员,多次受邀到波尔研究所(Niels Bohr Institute,Denmark)、北欧理论物理学会(Nordic Institute for Theoretical Physics (Nordita),Sweden)、挪威科技大学(Norwegian University of Science and Technology (NTNU) ,Norway)开展合作研究。在Phys. Rev. Lett.、 Phys. Rev. E等国际著名物理学、交叉科学刊物上发表学术论文。目前研究方向主要集中于inference problem(反推问题)、stochastic process(随机过程)、statistical machine learning (统计机器学习)、Patter analysis(图像处理)等领域。


  报告简介

  The talk focuses on the inference of network connections from statistical physics point of view. The reconstruction methods of the asynchronously updated kinetic Ising model with an asymmetric Sherrington-Kirkpatrick (SK) model are studied theoretically. Both approximate and exact learning rules for the couplings from the generated dynamical data are developed. All the learning rules are studied numerically. Good convergence is observed in accordance with the theoretical expectations. Several of the derived algorithms are applied to real experimental neural and financial dataset. Meaningful results are produced in both cases.

仙林校区地址:南京市仙林大学城文苑路9号 邮编:210023 三牌楼校区地址:南京市新模范马路66号 邮编:210003 锁金村校区地址:南京市龙蟠路177号 邮编:210042

联系电话:(86)-25-85866888 传真:(86)-25-85866999 邮箱:njupt@njupt.edu.cn

苏公网安备32011302320419号 |苏ICP备11073489号-1

Copyright © Nanjing University of Posts and Telecommunications All Rights Reserved